Emergency anaesthesia management in a patient with haemorrhagic shock and acute myocardial infarctus

Ramazan Baldemir, Ismail Aytaç, Mikail Alkan, Semih Bağkan, Onur Karaca, Dilşen Örnek
Department of Anaesthesia and Reanimation, Ankara Numune Training and Research Hospital, Ankara, Turkey

Abstract
Acute myocardial infarction (AMI) occurring perioperatively is associated with significant morbidity and mortality. In patients with AMI during emergency surgery, the maintenance of cardiac stabilization is of the utmost importance during anesthesia. Here we report a case of the anaesthetic approach taken to a major trauma patient who required emergency surgery for hemorrhagic shock related to an open fracture of the tibia and active bleeding and was diagnosed with acute inferior myocardial infarctus.

Keywords
Myocardial infarction; Hemorrhagic shock; Anaesthesia
Introduction

The primary aim of anaesthesia applied in the perioperative period to patients with acute myocardial infarctus (AMI) (Figure 1, 2) is to protect the myocardial oxygen delivery-consumption balance [1]. The most appropriate approach in this situation is to reduce oxygen consumption to the minimum for metabolic requirements while keeping oxygen delivery at the highest level [2].

The oxygen requirement of the myocardium is regulated by heart rate, afterload, and contractility. Tachycardia (heart rate >90 bpm) causes ischaemia more than hypertension or hypotension [3,4]. To prevent an increase in myocardial ischaemia, increased oxygen consumption of the myocardium must be prevented as this leads to tachycardia, so increased wall stress must be avoided and sufficient coronary perfusion must be provided [2]. Therefore, hypoxia, hypotension, hypertension, and tachycardia must not be allowed to develop during anaesthesia induction [5].

In all major trauma patients, it must be considered that there could be head trauma and cervical injuries [6]. Reviews of the scientific literature have identified the key indications to intubate a trauma patient [7]. Furthermore, information may not be able to be obtained about the fasting status of patients who are unconscious and require emergency surgery. In these cases, it should be accepted that the patient has recently eaten and the patient should be intubated with rapid sequence intubation techniques. In rapid sequence intubation, the necessary preparations should be made for the use of potent sedative or induction agents with the addition of neuromuscular blocker application at the same time and the process can be completed with appropriate tracheal intubation [8].

In this case presentation, the anaesthesia approach is described for emergency surgery on a patient with major trauma because of a traffic accident within the vehicle, diagnosed with an open tibia fracture and concomitant acute inferior myocardial infarct. It was also aimed to discuss the points requiring attention during tracheal intubation of a major trauma patient and the steps which should be taken during the application of anaesthesia in AMI cases.

Case Report

A 50-year old male patient was brought to the Emergency Dept following a traffic accident within the vehicle. In the initial examination, the patient was generally confused with measurements determined as TA: 76/40 mmHg, pulse: 97/min, respiratory count: 22/min and saturation measured with pulse oximetry: 94%. A Philadelphia neck brace had been placed on the patient. Emergency surgical intervention was planned with the Orthopaedics Dept for a subtotal amputated open tibia fracture below the right knee and active bleeding. The laboratory test results were as follows: creatinine 1.5 mg/dL, ALT: 93 U/L, AST: 93 U/L, WBC: 35000/µl, hemoglobin: 11.2 g/dL, and troponin: 0.698 ng/ml. With a diagnosis of acute inferior myocardial infarctus on the electrocardiograph (ECG), the patient was taken for emergency coronary angiography by the Cardiology Dept. During the coronary angiography, TA was determined as 61/39 mmHg, so a dopamine infusion was started. An ORh (-) erythrocyte suspension continued to be taken. On the coronary angiography, the left main coronary artery (LMCA) was normal and on the left anterior descending (LAD) artery, 60% narrowing was seen in the D1 body, 80% narrowing after D1, followed by LAD with plaque and in the distal LAD there was 30%-40% narrowing and muscular bridge in the septal branch. The circumflex (CX) was reported as diffuse 90% narrowing after OM1, and in the right coronary artery (RCA), 70% thrombotic narrowing after the conus branch. As the patient’s condition deteriorated during the procedure, after bleeding control was achieved at the end of the emergency orthopaedic operation, anti-aggregant treatment was started for the patient with a diagnosis of coronary artery disease and it was decided to evaluate in respect of revascularization. The patient was unconscious with respiratory problems when he was admitted to the emergency operating theatre for the active bleeding intervention. On admission for surgery, the patient was ASA IV E with TA 60/40, pulse 130/min and saturation 91%.

A left femoral central catheter was attached. As the patient had a Philadelphia neck brace, cranial and cervical imaging had not been able to be applied. The fasting status was not known, so it was accepted that the patient has recently eaten. After the administration of 10 mg rocuronium (IV) for priming, 4mg

![Figure 1. Acute inferior myocardial infarction; Acute anterior myocardial infarction.](image-url)
midazolam and 200mcg fentanyl were administered with the IV push route for induction. For neuromuscular blockage, 40mg rocuronium IV was added. After the application of mask ventilation with 100% O2 for approximately 1 min, the manual in-line stabilisation (MILS) technique was applied with the help of the second and third assistants for cervical stabilisation, and by applying cricoid pressure against the possibility of aspiration, the patient was intubated with an 8mm ID balloon endotracheal tube. The Philadelphia neck brace was re-applied. Invasive and non-invasive blood pressure monitoring, ECG, pulse oximetry and end-tidal CO2 monitoring were performed and anaesthesia maintenance was made with 1% sevoﬂurane in 50% air + 50% O2. After intubation, TA was measured as 64/44 mmHg and pulse as 133/min. As the blood group of the patient was unknown, 0Rh (-) erythrocyte suspension replacement was continued together with hydration and dopamine infusion. After the operation, which lasted approximately 3 hours, the patient was transferred to the Intensive Care Unit (ICU), still intubated. Postoperatively, as hemoglobin was 5.1 g/dL, 3 Units of erythrocyte suspension replacement were administered. On the recommendation of the Cardiology Dept, treatment was started of 100 mg acetylsalicylic acid 1x1, clopidogrel 75 mg 1x1, and enoxaparin sodium 0.6 cc 1x1. On the following day, the recommendation of the Cardiology Dept, treatment was started of 100 mg acetylsalicylic acid 1x1, clopidogrel 75 mg 1x1, and enoxaparin sodium 0.6 cc 1x1. On the following day, coronary angiography was applied by the Cardiology Dept and a stent was placed in the RCA. After that procedure, follow-up continued in the ICU.

Discussion
Coronary artery disease is one of the leading causes of death in many countries [9]. In patients who have experienced AMI, revascularization must be applied without delay. Fibrinolytic treatment or a percutaneous coronary intervention (PCI) is preferred for revascularization. If PCI cannot be applied by an experienced team within the first 20 mins of the onset of symptoms, it is recommended that fibrinolytic treatment is initiated [10-12]. If the reperfusion treatment is PCI, treatment should be started within 90 mins of the first medical contact. In high-risk patients with large anterior infarct and in those who present early within 2 hours, this period should be ≤ 60 mins [10-12]. Operating and the application of anaesthesia is extremely rare for a reason other than revascularisation of a patient who has experienced AMI. In such cases, however, there must be correct prioritization of the coronary revascularization and the non-cardiac surgical intervention. For coronary revascularisation, there must be a timely intervention that should not be delayed. In the current case, fibrinolytic treatment was not applied so that the emergency surgery could be performed, and immediately after diagnosis, emergency coronary angiography was applied by the Cardiology Dept.

During the application of anesthesia to patients who have experienced myocardial infarct, ensuring that the infarct area remains limited as far as possible and preventing the formation of new infarcts both intraoperatively and postoperatively must be taken into consideration. Perioperative and postoperative deaths can be caused by an imbalance in myocardial oxygen delivery and consumption and the deepening of myocardial ischemia. In cases with myocardial ischemia, the aim of treatment is to reduce myocardial oxygen consumption and increase oxygen delivery. In this imbalance, tachycardia, hypervolemia, and anemia are the most important correctable factors [13]. Furthermore, the most effective method in reducing AMI-related morbidity and mortality has been reported to be close hemodynamic monitoring and timely intervention to hemodynamic changes that occur [14]. Therefore, it is of the utmost importance to prevent the development of hypoxia, hypertension, hypotension, and tachycardia so that they do not cause acute hemodynamic changes and myocardial oxygen delivery-consumption imbalance. Benzodiazepines are recommended as agents in the induction of these patients as they do not create significant hemodynamic changes and because of the effects such as the reductions of doses of hypotonic agents such as pentothal and propofol that cause hypotension [15, 16]. Opioids are often used in the inhibition of the hyperdynamic response to anesthetic induction. Opioids show a vagal effect by reducing the sympathetic output from the central nervous system. Fentanyl and analogs, which do not lead to histamine expression, are most often used for this purpose. Opioids that do not cause histamine expression (fentanyl, alfentanil, sufentanil, remifentanil) do not lead to a reduction in systemic vascular resistance and therefore hypotension is not observed [2]. Ketamine, which is used as an induction agent in many patients because of hypotension, increases cardiac flow, heart rate and pulmonary artery pressure because of the central sympathomimetic properties and by increasing oxygen consumption it can cause myocardial ischemia [17]. In the facilitation of endotracheal intubation, succinylcholine, which is usually selected for rapid intubation, is a muscle relaxant which can cause blood pressure and heart rate changes by stimulating not only the nicotinic receptors in the nerve-muscle junction but also the nicotinic receptors in the parasympathetic and sympathetic ganglia and the muscarinic receptors in the sinoatrial node [18]. In this respect, with opioids and rocuronium at appropriate doses protecting against tachycardia and the use of oxygen, laryngoscopy and tracheal intubation can be achieved [2]. In a case report by Karamz et al, a patient with AMI who was to undergo emergency non-cardiac surgery was administered anesthesia induction with midazolam, fentanyl, low-dose propofol, and vecuronium and endotracheal intubation was achieved [1]. If there is known or suspected cervical spine injury in major trauma patients, excessive movement of the spine that could lead to spinal cord injury.

Figure 2. Acute anterolateral myocardial infarction

296 | Annals of Clinical and Analytical Medicine
must be avoided. To achieve this, while one person over the
cervical spine can help to provide immobilization, another can
safely and successfully apply endotracheal intubation [7].
However, an unconscious patient brought to the operating the-
atre should be accepted as having recently eaten and rapid,
sequence intubation should be applied. Rapid sequence intuba-
tion is an airway opening method that can be safely applied 
to patients in life-threatening conditions because of medical
emergency situations [8]. The use of induction agents at the 
same time as neuromuscular blocking agents aims to provide 
safe conditions for endotracheal intubation. In the current
case, in accordance with the information stated above, while
the dopamine infusion was continued, induction was applied with
midazolam and fentanyl and priming with rocuronium. By
applying cricoid pressure and the manual in-line stabilization
 technique with the help of 2 people, intubation was achieved
without any problems.

In anesthesia maintenance of patients with myocardial isch-
emia, sevoflurane can be used as this has been shown to have a
reducing effect on the incidence of myocardial infarctus and on
postoperative mortality following cardiac surgery [9]. Further-
more, sevoflurane is an appropriate agent to use in anesthesia
maintenance as it does not create tachycardia and provides
deep anesthesia in the short-term [10]. In a study by Rao et al, it
was reported that general anesthesia provided with nitrogen
protoxide increased the incidence of perioperative AMI [11].
In the current case, nitrogen protoxide was not used, but with
the use of sevoflurane together with an air and oxygen mixture, an-
esthesia maintenance was provided without any deterioration
of the patient’s hemodynamics.

Conclusion
In the case presented here, anesthesia induction was made
with midazolam, fentanyl and rocuronium and maintenance
with sevoflurane to a patient with AMI in hemorrhagic shock.
With this method, sufficient oxygen delivery can be provided
with minimal hemodynamic change, and as there could be
many factors together in major trauma patients which make
the anesthetist’s work more difficult, such as the patients who
have recently eaten, the possibility of head and cervical trauma,
and hemodynamic deterioration associated with hemorrhage, it
is necessary for the balances to be very well protected in these
negative conditions.

Scientific Responsibility Statement
The authors declare that they are responsible for the article’s scientific content including study design, data collection, analysis and interpretation, writing, some of the main line, or all of the preparation and scientific review of the contents and approval of the final version of the article.

Animal and human rights statement
All procedures performed in this study were in accordance with the ethical stan-
dards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. No animal or human studies were carried out by the authors for this article.

Conflict of interest
None of the authors received any type of financial support that could be consid-
ered potential conflict of interest regarding the manuscript or its submission.

References
1. Karamaz A, Kaya S, Tekelli T, Turhanoglu S, Ozgulmez MA. Olgu sunumu: Miyek-
kord enfarktüsü anciemekte olan bir hastaya acil cerrahi için anestezik yaklaşı-
(Case report: Anesthetic approach for emergency surgery with a patient with myo-

2. Güzelemir F, Erdoloğlu HB, Koçak T. Anesthesiologic approach to cardiac emer-

3. Slogoff S, Keats AS. Does perioperative myocardial ischemia contribute to postope-

4. Lieberman RW, Orkin FK, Jobes DR, Schwartz AJ. Hemodynamic predictors of
myocardial ischemia during halothane anesthesia for coronary-artery revascular-

5. Morgan GE, Mikhail MS, Murray MJ, Larson CP. In: Morgan GE (Ed). Clinical An-

6. Çeliker V, Bagil E. Pre-hospital airway management in trauma. Ulus Trav-
am Acil Cerrahi Derg/ Turkish Journal of Trauma and Emergency Surgery. 2005;11(2):89-95.

7. Öllertan J E, Parr M J A, Harrison K, Hannaham B, Sugrue M. Potential cervi-
cal spine injury and difficult airway management for emergency intubation of
trauma adults in the emergency department-a systematic review. Emerg Med J.

8. Eryaz O. Hızlı ve seri intübyasion (Fast and serial intubation). Sürüklı Top Eştişimi

9. Tutunay M, Demiralp S, Tuzcan Ç, Koraner Hastalığı Olanların Anesteziele-

10. Steg PG, Bonnefoy E, Chabaud S, Lapostolle F, Dubien PY, Cristofini P, et al. Impact of time to treatment on mortality after pre-hospital fibrinolysis or pri-
mary angioplasty: data from the CAPTIM randomized clinical trial. Circulation.


13. Hill RF, Kates RA, Davis D, Reves JG. Anesthetic implications for the man-
agement of patients with acute myocardial infarction: a matched cohort study
of patients undergoing emergency myocardial revascularization. J Cardiothorac

al infarction following coronary artery bypass: factors influencing its occurrence.

15. Nishiyama T, Misawa K, Yokoyama T, Hanaoka K. Effects of combining mid-
azolam and barbiturate on the response to tracheal intubation: changes in auto-

with propofol and midazolam: sympathoadrenergic reactions, hemodynamic ef-
fects, stress response, EEG and recovery. Anesthesiol Intensivmed Notfallmed.

17. White PF, Way WL, Trever AJ. Ketamine—its pharmacology and therapeutic

18. Morgan GE, Mikhail MS, Murray MJ, Larson CP. In: Morgan GE (Ed). Clinical An-

19. Landoni G, Biondi-Zoccai GG, Zangrillo A, Bignami E, D’Avolio S, Marchetti C,
et al. Desflurane and sevoflurane in cardiac surgery: A meta-analysis of random-

20. Conzen PF, Fischer S, Deeter C, Peter K. Sevoflurane provides greater protec-
tion of the myocardium than propofol in patients undergoing off-pump coronary

21. Rao TL, Jacobs KH, El-Etr AA. Reinfarction following anesthesia in patients

How to cite this article:
Razmaçan Baldemir, Ismail Aytaş, Mikail Alkan, Semih Baskın, Ömer Karaca, Dil-
şen Gökçek. Emergency anesthesia management in a patient with hemorrhagi-

S294-297.